Forecasting Bilateral Refugee Flows with High-dimensional Data and Machine Learning Techniques

A. Groeger, Conghan Zheng , Konstantin Boss ., Tobias Heidland, Finja Krueger

Producció científica: Document de treball

1 Descàrregues (Pure)

Resum

We develop monthly refugee flow forecasting models for 150 origin countries to the EU27, using machine learning and high-dimensional data, including digital trace data from Google Trends. Comparing different models and forecasting horizons and validating them out-of-sample, we find that an ensemble forecast combining Random Forest and Extreme Gradient Boosting algorithms consistently outperforms for forecast horizons between 3 to 12 months. For large refugee flow corridors, this holds in a parsimonious model exclusively based on Google Trends variables, which has the advantage of close-to-real-time availability. We provide practical recommendations about how our approach can enable ahead-of-period refugee forecasting applications.
Idioma originalAnglès
EditorBSE Working Papers
Estat de la publicacióPublicada - de març 2023

Sèrie de publicacions

NomBSE Working Paper
Núm.1387

Fingerprint

Navegar pels temes de recerca de 'Forecasting Bilateral Refugee Flows with High-dimensional Data and Machine Learning Techniques'. Junts formen un fingerprint únic.

Com citar-ho