Fixed-Quality Compression of Remote Sensing Images With Neural Networks

Sebastià Mijares Verdú*, Marie Chabert, Thomas Oberlin, Joan Serra Sagrista

*Autor corresponent d’aquest treball

Producció científica: Contribució a revistaArticleRecercaAvaluat per experts

2 Cites (Scopus)

Resum

Fixed-quality image compression is a coding paradigm where the tolerated introduced distortion is set by the user. This article proposes a novel fixed-quality compression method for remote sensing images. It is based on a neural architecture we have recently proposed for multirate satellite image compression. In this article, we show how to efficiently estimate the reconstruction quality using an appropriate statistical model. The performance of our approach is assessed and compared against recent fixed-quality coding techniques and standards in terms of accuracy and rate-distortion, as well as with recent machine learning compression methods in rate-distortion, showing competitive results. In particular, the proposed method does not introduce artifacts even when coding neighboring areas at different qualities.
Idioma originalAnglès
Pàgines (de-a)12169-12180
Nombre de pàgines12
RevistaIEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
Volum17
DOIs
Estat de la publicacióPublicada - 3 de jul. 2024

Fingerprint

Navegar pels temes de recerca de 'Fixed-Quality Compression of Remote Sensing Images With Neural Networks'. Junts formen un fingerprint únic.

Com citar-ho