First integrals of local analytic differential systems

Jaume Llibre, Chara Pantazi, Sebastian Walcher

Producció científica: Contribució a revistaArticleRecercaAvaluat per experts

35 Cites (Scopus)

Resum

We investigate formal and analytic first integrals of local analytic ordinary differential equations near a stationary point. A natural approach is via the Poincaré-Dulac normal forms: If there exists a formal first integral for a system in normal form then it is also a first integral for the semisimple part of the linearization, which may be seen as "conserved" by the normal form. We discuss the maximal setting in which all such first integrals are conserved, and show that all first integrals are conserved for certain classes of reversible systems. Moreover we investigate the case of linearization with zero eigenvalues, and we consider a three-dimensional generalization of the quadratic Dulac-Frommer center problem. © 2011 Elsevier Masson SAS.
Idioma originalAnglès
Pàgines (de-a)342-359
RevistaBulletin des Sciences Mathematiques
Volum136
Número3
DOIs
Estat de la publicacióPublicada - 1 d’abr. 2012

Fingerprint

Navegar pels temes de recerca de 'First integrals of local analytic differential systems'. Junts formen un fingerprint únic.

Com citar-ho