Finitely generated flat modules and a characterization of semiperfect rings

Alberto Facchini, Dolors Herbera, Iskhak Sakhajev

Producció científica: Contribució a revistaArticleRecercaAvaluat per experts

15 Cites (Scopus)

Resum

For a ring S, let K0(FGFl(S)) and K0(FGPr(S)) denote the Grothendieck groups of the category of all finitely generated flat 5-modules and the category of all finitely generated projective 5-modules respectively. We prove that a semilocal ring R is semiperfect if and only if the group homomorphism K0(FGFl(R)) → K0(FGFl(R/J(R))) is an epimorphism and K0(FGFl(R)) = K0(FGPr(R)).
Idioma originalAnglès
Pàgines (de-a)4195-4214
RevistaCommunications in Algebra
Volum31
DOIs
Estat de la publicacióPublicada - 1 de set. 2003

Fingerprint

Navegar pels temes de recerca de 'Finitely generated flat modules and a characterization of semiperfect rings'. Junts formen un fingerprint únic.

Com citar-ho