Finite-time bounds on the probabilistic violation of the second law of thermodynamics

Harry J. D. Miller, Martí Perarnau Llobet

Producció científica: Contribució a revistaArticleRecercaAvaluat per experts

2 Cites (Scopus)

Resum

Jarzynski's equality sets a strong bound on the probability of violating the second law of thermodynamics by extracting work beyond the free energy difference. We derive finite-time refinements to this bound for driven systems in contact with a thermal Markovian environment, which can be expressed in terms of the geometric notion of thermodynamic length. We show that finite-time protocols converge to Jarzynski's bound at a rate slower than
1/√τ, where τ is the total time of the work-extraction protocol. Our result highlights a new application of minimal dissipation processes and demonstrates a connection between thermodynamic geometry and the higher order statistical properties of work.
Idioma originalAnglès
Número d’article072
RevistaSciPost Physics
Volum14
DOIs
Estat de la publicacióPublicada - 17 d’abr. 2023

Fingerprint

Navegar pels temes de recerca de 'Finite-time bounds on the probabilistic violation of the second law of thermodynamics'. Junts formen un fingerprint únic.

Com citar-ho