Families of hadamard Z<inf>2Z4</inf>Z<inf>8</inf>-codes

Angel Del Rio, Josep Rifa

Producció científica: Contribució a revistaArticleRecercaAvaluat per experts

5 Cites (Scopus)

Resum

A Z2Z4Q8-code is the binary image, after a Gray map, of a subgroup of BBZ2k-1×\BBZ4k 2× Q8 k3, where Q8 is the quaternion group on eight elements. Such BBZ2\BBZ4Q8-codes are translation invariant propelinear codes as are the well known BBZ 4-linear or BBZ2BBZ4-linear codes. In this paper, we show that there exist 'pure' BBZ-2 BBZ4Q 8-codes, that is, codes that do not admit any abelian translation invariant propelinear structure. We study the dimension of the kernel and rank of the BBZ 2\BBZ4Q8-codes, and we give upper and lower bounds for these parameters. We give tools to construct a new class of Hadamard codes formed by several families of BBZ2\BBZ 4Q8-codes; we classify such codes from an algebraic point of view and we improve the upper and lower bounds for the rank and the dimension of the kernel when the codes are Hadamard. © 2013 IEEE.
Idioma originalAnglès
Número d’article6508950
Pàgines (de-a)5140-5151
RevistaIEEE Transactions on Information Theory
Volum59
Número8
DOIs
Estat de la publicacióPublicada - 29 de jul. 2013

Fingerprint

Navegar pels temes de recerca de 'Families of hadamard Z<inf>2Z4</inf>Z<inf>8</inf>-codes'. Junts formen un fingerprint únic.

Com citar-ho