Extracting a fuzzy system by using genetic algorithms for imbalanced datasets classification: Application on Down's syndrome detection

Vicenç Soler*, Marta Prim

*Autor corresponent d’aquest treball

Producció científica: Capítol de llibreCapítolRecercaAvaluat per experts

4 Cites (Scopus)

Resum

This chapter presents a new methodology to extract a Fuzzy System by using Genetic Algorithms for the classification of imbalanced datasets when the intelligibility of the Fuzzy Rules is an issue. We propose a method for fuzzy variable construction, based on modifying the set of fuzzy variables obtained by the DDA/RecBF clustering algorithm. Afterwards, these variables are recombined to obtain Fuzzy Rules by means of a Genetic Algorithm. The method has been developed for the prenatal Down's syndrome detection during the secondtrimester of pregnancy. We present empirical results showing its accuracy for this task. Furthermore, we provide more generic experimental results over UCI datasets proving that the method can have a wider applicability on imbalanced datasets.

Idioma originalAnglès
Títol de la publicacióMining Complex Data
EditorsDjamel Zighed, Hakim Hacid, Shusaku Tsumoto, Zbigniew Ras
Pàgines23-39
Nombre de pàgines17
DOIs
Estat de la publicacióPublicada - 2009

Sèrie de publicacions

NomStudies in Computational Intelligence
Volum165
ISSN (imprès)1860-949X

Fingerprint

Navegar pels temes de recerca de 'Extracting a fuzzy system by using genetic algorithms for imbalanced datasets classification: Application on Down's syndrome detection'. Junts formen un fingerprint únic.

Com citar-ho