Resum
We prove that, under suitable restrictions, an idempotent monad t defined on a full subcategory A of a category C can be extended to an idempotent monad T on C in a universal (terminal) way. Our result applies in particular to the case when t is P-localization of nilpotent groups (where P denotes a set of primes) and C is the category of all groups. The corresponding monad T on C is, in a certain precise sense, the best idempotent approximation to the usual Zp-completion of groups; it turns out to be a strict epimorphic image of Bousfield's HZp-localization. © 1995.
Idioma original | Anglès |
---|---|
Pàgines (de-a) | 149-165 |
Revista | Journal of Pure and Applied Algebra |
Volum | 103 |
Número | 2 |
DOIs | |
Estat de la publicació | Publicada - 15 de set. 1995 |