TY - JOUR
T1 - Expression, localization and potential physiological significance of alcohol dehydrogenase in the gastrointestinal tract
AU - Vaglenova, Julia
AU - Martínez, Susana E.
AU - Porté, Sergio
AU - Duester, Gregg
AU - Farrés, Jaume
AU - Parés, Xavier
PY - 2003/6/1
Y1 - 2003/6/1
N2 - ADH1 and ADH4 are the major alcohol dehydrogenases (ADH) in ethanol and retinol oxidation. ADH activity and protein expression were investigated in rat gastrointestinal tissue homogenates by enzymatic and Western blot analyses. In addition, sections of adult rat gastrointestinal tract were examined by in situ hybridization and immunohistochemistry. ADH1 and ADH4 were detected along the whole tract, changing their localization and relative content as a function of the area studied. While ADH4 was more abundant in the upper (esophagus and stomach) and lower (colorectal) regions, ADH1 was predominant in the intestine but also present in stomach. Both enzymes were detected in mucosa but, in general, ADH4 was found in outer cell layers, lining the lumen, while ADH1 was detected in the inner cell layers. Of interest were the sharp discontinuities in the expression found in the pyloric region (ADH1) and the gastroduodenal junction (ADH4), reflecting functional changes. The precise localization of ADH in the gut reveals the cell types where active alcohol oxidation occurs during ethanol ingestion, providing a molecular basis for the gastrointestinal alcohol pathology. Localization of ADH, acting as retinol dehydrogenase/retinal reductase, also indicates sites of active retinoid metabolism in the gut, essential for mucosa function and vitamin A absorption.
AB - ADH1 and ADH4 are the major alcohol dehydrogenases (ADH) in ethanol and retinol oxidation. ADH activity and protein expression were investigated in rat gastrointestinal tissue homogenates by enzymatic and Western blot analyses. In addition, sections of adult rat gastrointestinal tract were examined by in situ hybridization and immunohistochemistry. ADH1 and ADH4 were detected along the whole tract, changing their localization and relative content as a function of the area studied. While ADH4 was more abundant in the upper (esophagus and stomach) and lower (colorectal) regions, ADH1 was predominant in the intestine but also present in stomach. Both enzymes were detected in mucosa but, in general, ADH4 was found in outer cell layers, lining the lumen, while ADH1 was detected in the inner cell layers. Of interest were the sharp discontinuities in the expression found in the pyloric region (ADH1) and the gastroduodenal junction (ADH4), reflecting functional changes. The precise localization of ADH in the gut reveals the cell types where active alcohol oxidation occurs during ethanol ingestion, providing a molecular basis for the gastrointestinal alcohol pathology. Localization of ADH, acting as retinol dehydrogenase/retinal reductase, also indicates sites of active retinoid metabolism in the gut, essential for mucosa function and vitamin A absorption.
KW - Ethanol
KW - Immunohistochemistry
KW - In situ hybridization
KW - Retinoic acid
KW - Retinol
U2 - 10.1046/j.1432-1033.2003.03642.x
DO - 10.1046/j.1432-1033.2003.03642.x
M3 - Article
SN - 0014-2956
VL - 270
SP - 2652
EP - 2662
JO - European Journal of Biochemistry
JF - European Journal of Biochemistry
ER -