Projectes per any
Resum
In this paper we consider non-local energies defined on probability measures in the plane, given by a convolution interaction term plus a quadratic confinement. The interaction kernel is − log |z| + αx2/|z|2, z = x + iy, with −1 < α < 1. This kernel is anisotropic except for the Coulomb case α = 0. We present a short compact proof of the known surprising fact that the unique minimizer of the energy is the normalized characteristic function of the domain enclosed by an ellipse with horizontal semi-axis √1 − α and vertical semi-axis √1 + α. Letting α → 1−, we find that the semicircle law on the vertical axis is the unique minimizer of the corresponding energy, a result related to interacting dislocations, and previously obtained by some of the authors. We devote the first sections of this paper to presenting some well-known background material in the simplest way possible, so that readers unfamiliar with the subject find the proofs accessible.
Idioma original | Anglès |
---|---|
Pàgines (de-a) | 468-482 |
Nombre de pàgines | 15 |
Revista | Izvestiya Mathematics |
Volum | 85 |
Número | 3 |
DOIs | |
Estat de la publicació | Publicada - de juny 2021 |
Fingerprint
Navegar pels temes de recerca de 'Explicit minimizers of some non-local anisotropic energies: A short proof'. Junts formen un fingerprint únic.Projectes
- 1 Acabat
-
Análisis y ecuaciones en derivadas parciales
Verdera Melenchon, J. M. (PI), Mateu Bennassar, J. E. (Investigador/a Principal 2), Scardia, L. (Col.laborador/a), Clop Ponte, A. (Investigador/a), Orobitg Huguet, J. (Investigador/a) & Toboso Flores, J. J. (Col.laborador/a)
Ministerio de Economía y Competitividad (MINECO)
30/12/16 → 29/06/21
Projecte: Projectes i Ajuts a la Recerca