Existence of at most two limit cycles for some non-autonomous differential equations

Armengol Gasull, Yulin Zhao

Producció científica: Contribució a una revistaArticleRecercaAvaluat per experts

2 Cites (Scopus)

Resum

It is know that the non-autonomous differential equations dx/dt = a(t) + b(t)|x|, where a(t) and b(t) are 1-periodic maps of class C1, have no upper bound for their number of limit cycles (isolated solutions satisfying x(0) = x(1)). We prove that if either a(t) or b(t) does not change sign, then their maximum number of limit cycles is two, taking into account their multiplicities, and that this upper bound is sharp. We also study all possible configurations of limit cycles. Our result is similar to other ones known for Abel type periodic differential equations although the proofs are quite different.
Idioma originalEnglish
Pàgines (de-a)970-982
Nombre de pàgines13
RevistaCommunications on Pure and Applied Analysis
Volum22
Número3
DOIs
Estat de la publicacióPublicada - de març 2023

Fingerprint

Navegar pels temes de recerca de 'Existence of at most two limit cycles for some non-autonomous differential equations'. Junts formen un fingerprint únic.

Com citar-ho