Evaluation of word spotting under improper segmentation scenario

Sounak Dey, Anguelos Nicolaou, Josep Lladós, Umapada Pal

Producció científica: Contribució a revistaArticleRecerca

1 Citació (Scopus)

Resum

© 2019, Springer-Verlag GmbH Germany, part of Springer Nature. Word spotting is an important recognition task in large-scale retrieval of document collections. In most of the cases, methods are developed and evaluated assuming perfect word segmentation. In this paper, we propose an experimental framework to quantify the goodness that word segmentation has on the performance achieved by word spotting methods in identical unbiased conditions. The framework consists of generating systematic distortions on segmentation and retrieving the original queries from the distorted dataset. We have tested our framework on several established and state-of-the-art methods using George Washington and Barcelona Marriage Datasets. The experiments done allow for an estimate of the end-to-end performance of word spotting methods.
Idioma originalAnglès
Pàgines (de-a)361-374
Nombre de pàgines14
RevistaInternational Journal on Document Analysis and Recognition
Volum22
Número4
DOIs
Estat de la publicacióPublicada - 1 de gen. 2019

Fingerprint

Navegar pels temes de recerca de 'Evaluation of word spotting under improper segmentation scenario'. Junts formen un fingerprint únic.

Com citar-ho