TY - JOUR
T1 - Evaluation of SARS-CoV-2 entry, inflammation and new therapeutics in human lung tissue cells
AU - Grau Expósito, Judith
AU - Perea, David
AU - Suppi, Marina
AU - Massana, Núria
AU - Vergara, Ander
AU - Soler, María José
AU - Trinité, Benjamin
AU - Blanco, Julià
AU - García-Pérez, Javier
AU - Alcami, Jose
AU - Serrano-Mollar, Anna
AU - Rosado Rodríguez, Joel
AU - Falcó, Vicenç
AU - Genescà Ferrer, Meritxell
AU - Buzón, Maria José
PY - 2022
Y1 - 2022
N2 - The development of physiological models that reproduce SARS-CoV-2 infection in primary human cells will be instrumental to identify host-pathogen interactions and potential therapeutics. Here, using cell suspensions directly from primary human lung tissues (HLT), we have developed a rapid platform for the identification of viral targets and the expression of viral entry factors, as well as for the screening of viral entry inhibitors and anti-inflammatory compounds. The direct use of HLT cells, without long-term cell culture and in vitro differentiation approaches, preserves main immune and structural cell populations, including the most susceptible cell targets for SARS-CoV-2; alveolar type II (AT-II) cells, while maintaining the expression of proteins involved in viral infection, such as ACE2, TMPRSS2, CD147 and AXL. Further, antiviral testing of 39 drug candidates reveals a highly reproducible method, suitable for different SARS-CoV-2 variants, and provides the identification of new compounds missed by conventional systems, such as VeroE6. Using this method, we also show that interferons do not modulate ACE2 expression, and that stimulation of local inflammatory responses can be modulated by different compounds with antiviral activity. Overall, we present a relevant and rapid method for the study of SARS-CoV-2. The early stages of laboratory identification of therapeutics against pathogens is usually based on the use of immortalized cell lines, as exemplified by many studies screening antivirals against SARS-CoV-2. Cell lines are manipulated for their continuous growth which offers several advantages, however they do not fully reproduce the behavior of primary cells nor the complexity of heterogeneous populations. In this study, we overcome this limitation by using surgical resections to establish human lung tissue (HLT) cell cultures ready for drug evaluation. First, we show that HLT preserves lung cell composition, including the main SARS-CoV-2 cellular target, namely alveolar type-2 cells, as well as the proteins required for viral entry into the cells: ACE2, CD147, TMPRSS2 and AXL. Moreover, using HLT cells we identified new antiviral drug candidates missed by conventional systems, and anti-inflammatory compounds that module molecules associated with SARS-CoV-2 infection. In summary, we have established a physiological model that can be used for the identification of novel anti-SARS-CoV-2 therapeutics and other respiratory pathogens
AB - The development of physiological models that reproduce SARS-CoV-2 infection in primary human cells will be instrumental to identify host-pathogen interactions and potential therapeutics. Here, using cell suspensions directly from primary human lung tissues (HLT), we have developed a rapid platform for the identification of viral targets and the expression of viral entry factors, as well as for the screening of viral entry inhibitors and anti-inflammatory compounds. The direct use of HLT cells, without long-term cell culture and in vitro differentiation approaches, preserves main immune and structural cell populations, including the most susceptible cell targets for SARS-CoV-2; alveolar type II (AT-II) cells, while maintaining the expression of proteins involved in viral infection, such as ACE2, TMPRSS2, CD147 and AXL. Further, antiviral testing of 39 drug candidates reveals a highly reproducible method, suitable for different SARS-CoV-2 variants, and provides the identification of new compounds missed by conventional systems, such as VeroE6. Using this method, we also show that interferons do not modulate ACE2 expression, and that stimulation of local inflammatory responses can be modulated by different compounds with antiviral activity. Overall, we present a relevant and rapid method for the study of SARS-CoV-2. The early stages of laboratory identification of therapeutics against pathogens is usually based on the use of immortalized cell lines, as exemplified by many studies screening antivirals against SARS-CoV-2. Cell lines are manipulated for their continuous growth which offers several advantages, however they do not fully reproduce the behavior of primary cells nor the complexity of heterogeneous populations. In this study, we overcome this limitation by using surgical resections to establish human lung tissue (HLT) cell cultures ready for drug evaluation. First, we show that HLT preserves lung cell composition, including the main SARS-CoV-2 cellular target, namely alveolar type-2 cells, as well as the proteins required for viral entry into the cells: ACE2, CD147, TMPRSS2 and AXL. Moreover, using HLT cells we identified new antiviral drug candidates missed by conventional systems, and anti-inflammatory compounds that module molecules associated with SARS-CoV-2 infection. In summary, we have established a physiological model that can be used for the identification of novel anti-SARS-CoV-2 therapeutics and other respiratory pathogens
U2 - 10.1371/journal.ppat.1010171
DO - 10.1371/journal.ppat.1010171
M3 - Article
C2 - 35025963
SN - 1553-7374
VL - 18
JO - PLoS Pathogens
JF - PLoS Pathogens
ER -