TY - JOUR
T1 - Estimation of quantum finite mixtures
AU - De Vicente, J. I.
AU - Calsamiglia, J.
AU - Muñoz-Tapia, R.
AU - Bagan, E.
PY - 2010/1/29
Y1 - 2010/1/29
N2 - We consider the problem of determining the weights of a quantum ensemble. That is to say, given a quantum system that is in a set of possible known states according to an unknown probability law, we give strategies to estimate the individual probabilities, weights, or mixing proportions. Such strategies can be used to estimate the frequencies at which different independent signals are emitted by a source. They can also be used to estimate the weights of particular terms in a canonical decomposition of a quantum channel. The quality of these strategies is quantified by a covariance-type error matrix. According with this cost function, we give optimal strategies in both the single-shot and multiple-copy scenarios. The latter is also analyzed in the asymptotic limit of large number of copies. We give closed expressions of the error matrix for two-component quantum mixtures of qubit systems. The Fisher information plays an unusual role in the problem at hand, providing exact expressions of the minimum covariance matrix for any number of copies. © 2010 The American Physical Society.
AB - We consider the problem of determining the weights of a quantum ensemble. That is to say, given a quantum system that is in a set of possible known states according to an unknown probability law, we give strategies to estimate the individual probabilities, weights, or mixing proportions. Such strategies can be used to estimate the frequencies at which different independent signals are emitted by a source. They can also be used to estimate the weights of particular terms in a canonical decomposition of a quantum channel. The quality of these strategies is quantified by a covariance-type error matrix. According with this cost function, we give optimal strategies in both the single-shot and multiple-copy scenarios. The latter is also analyzed in the asymptotic limit of large number of copies. We give closed expressions of the error matrix for two-component quantum mixtures of qubit systems. The Fisher information plays an unusual role in the problem at hand, providing exact expressions of the minimum covariance matrix for any number of copies. © 2010 The American Physical Society.
U2 - 10.1103/PhysRevA.81.012332
DO - 10.1103/PhysRevA.81.012332
M3 - Article
SN - 1050-2947
VL - 81
JO - Physical Review A - Atomic, Molecular, and Optical Physics
JF - Physical Review A - Atomic, Molecular, and Optical Physics
M1 - 012332
ER -