Equivalent low-order model for a nonlinear diffusion equation

J. Farjas, J. I. Rosell, R. Herrero, R. Pons, F. Pi, G. Orriols

Producció científica: Contribució a una revistaArticleRecercaAvaluat per experts

18 Cites (Scopus)


We present an equivalent low-order model for a simple PDE system that exhibits interesting low-dimensional dynamics with a rich variety of homoclinic phenomena and whose effective dimension may be gradually increased by means of system parameters. The system is a linear heat equation subject to a nonlinear and nonlocal boundary condition and the reduction procedure is based on a finite element method. We will show that both the PDE and ODE systems have indentical stationary solution with a very similar linear stability behaviour and exhibit also very similar dynamics, at least within parameter ranges corresponding to physical devices. © 1996 Elsevier Science B.V. All rights reserved.
Idioma originalEnglish
Pàgines (de-a)107-127
RevistaPhysica D: Nonlinear Phenomena
Estat de la publicacióPublicada - 1 de gen. 1996


Navegar pels temes de recerca de 'Equivalent low-order model for a nonlinear diffusion equation'. Junts formen un fingerprint únic.

Com citar-ho