Equilibration rate for the linear inhomogeneous relaxation-time Boltzmann equation for charged particles

Maria J. Cáceres, José A. Carrillo, Thierry Goudon

Producció científica: Contribució a revistaArticleRecercaAvaluat per experts

46 Cites (Scopus)

Resum

We study the long-time behavior of a linear inhomogeneous Boltzmann equation. The collision operator is modeled by a simple relaxation towards the Maxwellian distribution with zero mean and fixed lattice temperature. Particles are moving under the action of an external potential that confines particles, i.e., there exists a unique stationary probability density. Convergence rate towards global equilibrium is explicitly measured based on the entropy dissipation method and apriori time independent estimates on the solutions. We are able to prove that this convergence is faster than any algebraic time function, but we cannot achieve exponential convergence.
Idioma originalAnglès
Pàgines (de-a)969-989
RevistaCommunications in Partial Differential Equations
Volum28
DOIs
Estat de la publicacióPublicada - 1 de gen. 2003

Fingerprint

Navegar pels temes de recerca de 'Equilibration rate for the linear inhomogeneous relaxation-time Boltzmann equation for charged particles'. Junts formen un fingerprint únic.

Com citar-ho