TY - JOUR
T1 - Efficient Lossless Compression of Integer Astronomical Data
AU - Maireles Gonzalez, Oscar
AU - Bartrina Rapesta, Joan
AU - Hernández Cabronero, Miguel
AU - Serra Sagrista, Joan
PY - 2023/9/29
Y1 - 2023/9/29
N2 - Each new generation of telescope produces increasingly larger astronomical data volumes, which are expected to reach the order of exabytes in the next decade. Effective and fast data compression methods are paramount to help the scientific community contain storage costs and improve transmission times. Astronomical data differs significantly from natural and Earth-observation images, asking for specifically tailored compression approaches. This paper presents a novel lossless compression technique that employs the discrete Haar wavelet transform within the JPEG 2000 standard. Its performance is compared to that of a comprehensive selection of compressors, including fpack, the most common technique in astronomical observatories, as well as other algorithms highly competitive for other types of data. Experiments are performed on a large data set of 16 bit integer images, produced by telescopes around the world and representative of a wide variety of astronomical scenarios. The proposed technique has two modes. The first mode outperforms all the other tested techniques in terms of compression performance. It surpasses the most competitive configuration of fpack by, respectively, 5.3% (about 0.3 bits per sample), having also 4.5% lower compression and decompression times. The second mode is the fastest among all tested techniques. Its compression and decompression times are 2.5 and 3.5 times faster than the fastest configuration of fpack, while also yielding a 2.4% better compression performance (0.15 bits per sample)
AB - Each new generation of telescope produces increasingly larger astronomical data volumes, which are expected to reach the order of exabytes in the next decade. Effective and fast data compression methods are paramount to help the scientific community contain storage costs and improve transmission times. Astronomical data differs significantly from natural and Earth-observation images, asking for specifically tailored compression approaches. This paper presents a novel lossless compression technique that employs the discrete Haar wavelet transform within the JPEG 2000 standard. Its performance is compared to that of a comprehensive selection of compressors, including fpack, the most common technique in astronomical observatories, as well as other algorithms highly competitive for other types of data. Experiments are performed on a large data set of 16 bit integer images, produced by telescopes around the world and representative of a wide variety of astronomical scenarios. The proposed technique has two modes. The first mode outperforms all the other tested techniques in terms of compression performance. It surpasses the most competitive configuration of fpack by, respectively, 5.3% (about 0.3 bits per sample), having also 4.5% lower compression and decompression times. The second mode is the fastest among all tested techniques. Its compression and decompression times are 2.5 and 3.5 times faster than the fastest configuration of fpack, while also yielding a 2.4% better compression performance (0.15 bits per sample)
U2 - 10.1088/1538-3873/acf6e0
DO - 10.1088/1538-3873/acf6e0
M3 - Article
SN - 0004-6280
VL - 135
JO - Publications of the Astronomical Society of the Pacific
JF - Publications of the Astronomical Society of the Pacific
IS - 1051
M1 - 094502
ER -