TY - JOUR
T1 - Early postnatal neuroactive steroid manipulation differentially affects recognition memory and passive avoidance performance in male rats
AU - Bartolomé, Iris
AU - Llidó, Anna
AU - Darbra, Sònia
AU - Pallarès, Marc
PY - 2020/9/15
Y1 - 2020/9/15
N2 - Early postnatal neuroactive steroids (NAS) play a significant role in the neurodevelopment. Their alteration can modify adult behavior, such as anxiety or learning. For this reason, we set out to observe if neonatal NAS levels alteration affects two types of learning implying low or high levels of emotional content, such as recognition memory and aversive learning respectively. Thus, we tested allopregnanolone or finasteride administered from postnatal days 5−9. In adulthood, recognition memory was assessed using the object recognition test, as well as aversive learning throughout the passive avoidance test (PA). Because of the important emotional component of PA, which can be influencing learning, we evaluated anxiety-like behavior by means of the open field test (OF). The results indicated that those animals administered with finasteride showed higher recognition levels of a familiar object. On the other hand, they showed an impairment in a stressful learning, such as PA. However, no effects of finasteride were observed on anxiety-like behavior in OF, despite it has been reported that neonatal finasteride treatment can promote an anxiety-like profile in the elevated plus-maze test in adulthood. Regarding neonatal allopregnanolone, animals showed higher levels in OF exploration only when they were already familiar with the apparatus. Furthermore, neonatal allopregnanolone did not affect recognition memory or aversive learning. In conclusion, the neonatal NAS manipulation by means of finasteride differently affected two types of learning implying distinct stress levels. Altogether, the results show the importance of the emotional content to explain the effects of neonatal NAS manipulation on learning.
AB - Early postnatal neuroactive steroids (NAS) play a significant role in the neurodevelopment. Their alteration can modify adult behavior, such as anxiety or learning. For this reason, we set out to observe if neonatal NAS levels alteration affects two types of learning implying low or high levels of emotional content, such as recognition memory and aversive learning respectively. Thus, we tested allopregnanolone or finasteride administered from postnatal days 5−9. In adulthood, recognition memory was assessed using the object recognition test, as well as aversive learning throughout the passive avoidance test (PA). Because of the important emotional component of PA, which can be influencing learning, we evaluated anxiety-like behavior by means of the open field test (OF). The results indicated that those animals administered with finasteride showed higher recognition levels of a familiar object. On the other hand, they showed an impairment in a stressful learning, such as PA. However, no effects of finasteride were observed on anxiety-like behavior in OF, despite it has been reported that neonatal finasteride treatment can promote an anxiety-like profile in the elevated plus-maze test in adulthood. Regarding neonatal allopregnanolone, animals showed higher levels in OF exploration only when they were already familiar with the apparatus. Furthermore, neonatal allopregnanolone did not affect recognition memory or aversive learning. In conclusion, the neonatal NAS manipulation by means of finasteride differently affected two types of learning implying distinct stress levels. Altogether, the results show the importance of the emotional content to explain the effects of neonatal NAS manipulation on learning.
KW - Development
KW - Finasteride
KW - Learning
KW - Neuroactive steroids
KW - Passive avoidance
KW - Recognition memory
UR - http://www.scopus.com/inward/record.url?scp=85088860654&partnerID=8YFLogxK
U2 - 10.1016/j.bbr.2020.112833
DO - 10.1016/j.bbr.2020.112833
M3 - Artículo
C2 - 32726667
AN - SCOPUS:85088860654
SN - 0166-4328
VL - 394
JO - Behavioural Brain Research
JF - Behavioural Brain Research
M1 - 112833
ER -