TY - JOUR
T1 - Dysferlin interacts with calsequestrin-1, myomesin-2 and dynein in human skeletal muscle
AU - Flix, Bàrbara
AU - De La Torre, Carolina
AU - Castillo, Juan
AU - Casal, Carme
AU - Illa, Isabel
AU - Gallardo, Eduard
PY - 2013/1/1
Y1 - 2013/1/1
N2 - Dysferlinopathies are a group of progressive muscular dystrophies characterized by mutations in the gene DYSF. These mutations cause scarcity or complete absence of dysferlin, a protein that is expressed in skeletal muscle and plays a role in membrane repair. Our objective was to unravel the proteins that constitute the dysferlin complex and their interaction within the complex using immunoprecipitation assays (IP), blue native gel electrophoresis (BN) in healthy adult skeletal muscle and healthy cultured myotubes, and fluorescence lifetime imaging-fluorescence resonance energy transfer (FLIM-FRET) anal-ysis in healthy myotubes. The combination of immunoprecipitations and blue native electrophoresis allowed us to identify previously reported partners of dysferlin - such as caveolin-3, AHNAK, annexins, or Trim72/MG53 - and new interacting partners. Fluorescence lifetime imaging showed a direct inter-action of dysferlin with Trim72/MG53, AHNAK, cytoplasmic dynein, myomesin-2 and calsequestrin-1, but not with caveolin-3 or dystrophin. In conclusion, although IP and BN are useful tools to identify the proteins in a complex, techniques such as fluorescence lifetime imaging analysis are needed to determine the direct and indirect interactions of these proteins within the complex. This knowledge may help us to better understand the roles of dysferlin in muscle tissue and identify new genes involved in muscular dystrophies in which the responsible gene is unknown.© 2013 Elsevier Ltd. All rights reserved.
AB - Dysferlinopathies are a group of progressive muscular dystrophies characterized by mutations in the gene DYSF. These mutations cause scarcity or complete absence of dysferlin, a protein that is expressed in skeletal muscle and plays a role in membrane repair. Our objective was to unravel the proteins that constitute the dysferlin complex and their interaction within the complex using immunoprecipitation assays (IP), blue native gel electrophoresis (BN) in healthy adult skeletal muscle and healthy cultured myotubes, and fluorescence lifetime imaging-fluorescence resonance energy transfer (FLIM-FRET) anal-ysis in healthy myotubes. The combination of immunoprecipitations and blue native electrophoresis allowed us to identify previously reported partners of dysferlin - such as caveolin-3, AHNAK, annexins, or Trim72/MG53 - and new interacting partners. Fluorescence lifetime imaging showed a direct inter-action of dysferlin with Trim72/MG53, AHNAK, cytoplasmic dynein, myomesin-2 and calsequestrin-1, but not with caveolin-3 or dystrophin. In conclusion, although IP and BN are useful tools to identify the proteins in a complex, techniques such as fluorescence lifetime imaging analysis are needed to determine the direct and indirect interactions of these proteins within the complex. This knowledge may help us to better understand the roles of dysferlin in muscle tissue and identify new genes involved in muscular dystrophies in which the responsible gene is unknown.© 2013 Elsevier Ltd. All rights reserved.
KW - Blue native
KW - Cytoplasmic dynein
KW - Dysferlin
KW - FLIM-FRET analysis
KW - Trim72/MG53
U2 - 10.1016/j.biocel.2013.06.007
DO - 10.1016/j.biocel.2013.06.007
M3 - Article
SN - 1357-2725
VL - 45
SP - 1927
EP - 1938
JO - International Journal of Biochemistry and Cell Biology
JF - International Journal of Biochemistry and Cell Biology
IS - 8
ER -