Dynamics of the Isotropic Star Differential System from the Mathematical and Physical Point of Views

Producció científica: Contribució a una revistaArticleRecercaAvaluat per experts

Resum

The following differential quadratic polynomial differential system dx/dt=y−x, dy/dt=2y−y/y−1(2−yy−5y−4/y−1x), when the parameter y∈(1,2] models the structure equations of an isotropic star having a linear barotropic equation of state, being x=m(r)/r where m(r)≥0 is the mass inside the sphere of radius r of the star, y=4πr2ρ where ρ is the density of the star, and t=ln(r/R) where R is the radius of the star. First, we classify all the topologically non-equivalent phase portraits in the Poincaré disc of these quadratic polynomial differential systems for all values of the parameter y∈R∖{1}. Second, using the information of the different phase portraits obtained we classify the possible limit values of m(r)/r and 4πr2ρ of an isotropic star when r decreases.
Idioma originalEnglish
Pàgines (de-a)70-78
Nombre de pàgines9
RevistaAppliedMath
Volum4
Número1
DOIs
Estat de la publicacióPublicada - 2 de gen. 2024

Fingerprint

Navegar pels temes de recerca de 'Dynamics of the Isotropic Star Differential System from the Mathematical and Physical Point of Views'. Junts formen un fingerprint únic.

Com citar-ho