Does NMT make a difference when post-editing closely related languages? The case of Spanish-Catalan

Producció científica: Capítol de llibreCapítolRecercaAvaluat per experts

Resum

In the last years, we have witnessed an increase in the use of post-editing of machine translation (PEMT) in the translation industry. It has been included as part of the translation workflow because it increases productivity of translators. Currently, many Language Service Providers offer PEMT as a service. For many years now, (closely) related languages have been post-edited using rulebased and phrase-based machine translation (MT) systems because they present less challenges due to their morphological and syntactic similarities. Given the recent popularity of neural MT (NMT), this paper analyzes the performance of this approach compared to phrase-based statistical MT (PBSMT) on in-domain and general domain documents. We use standard automatic measures and temporal and technical effort to assess if NMT yields a real improvement when it comes to post-editing the Spanish-Catalan language pair.
Idioma originalAnglès
Títol de la publicacióProceedings of Machine Translation Summit XVII
Subtítol de la publicacióTranslator, Project and User Tracks
EditorEuropean Association for Machine Translation
Pàgines49-56
Nombre de pàgines8
Volum2
Estat de la publicacióPublicada - d’ag. 2019

Fingerprint

Navegar pels temes de recerca de 'Does NMT make a difference when post-editing closely related languages? The case of Spanish-Catalan'. Junts formen un fingerprint únic.

Com citar-ho