TY - JOUR
T1 - Dissimilar catalytic behavior of molecular or colloidal palladium systems with a new NHC ligand
AU - Gómez-Villarraga, Fernando
AU - De Tovar, Jonathan
AU - Guerrero, Miguel
AU - Nolis, Pau
AU - Parella, Teodor
AU - Lecante, Pierre
AU - Romero, Nuria
AU - Escriche, Lluís
AU - Bofill, Roger
AU - Ros, Josep
AU - Sala, Xavier
AU - Philippot, Karine
AU - García-Antón, Jordi
PY - 2017/1/1
Y1 - 2017/1/1
N2 - © 2017 The Royal Society of Chemistry. In this work, we describe the synthesis of a new N-heterocyclic carbene (NHC) ligand, derived from a hybrid pyrazole-imidazolium scaffold, namely 1-[2-(3,5-dimethylpyrazol-1-yl)ethyl]-3-((S)-1-phenylethyl)-3H-imidazol-2-ylidene (L). This ligand has been used as a stabilizer for the organometallic synthesis of palladium(0) nanoparticles (Pd NPs). L presents a better stabilizing effect than its pre-carbenic HLCl counterpart, allowing the formation of isolated Pd NPs while HLCl yields aggregated ones. Additionally, molecular Pd(ii) coordination compounds of L and HLCl were synthesized and characterized to better understand the coordination modes of these ligands. Both molecular and colloidal Pd systems have been further tested in catalytic C-C coupling processes. Three different types of reactions have been observed depending on the catalytic system: (i) the Suzuki-Miyaura reaction takes place with Pd molecular complexes; (ii) a secondary reaction, the dehalogenation of the substrate, is always detected and (iii) the C-C homocoupling between two molecules of bromoarenes is observed with colloidal catalysts.
AB - © 2017 The Royal Society of Chemistry. In this work, we describe the synthesis of a new N-heterocyclic carbene (NHC) ligand, derived from a hybrid pyrazole-imidazolium scaffold, namely 1-[2-(3,5-dimethylpyrazol-1-yl)ethyl]-3-((S)-1-phenylethyl)-3H-imidazol-2-ylidene (L). This ligand has been used as a stabilizer for the organometallic synthesis of palladium(0) nanoparticles (Pd NPs). L presents a better stabilizing effect than its pre-carbenic HLCl counterpart, allowing the formation of isolated Pd NPs while HLCl yields aggregated ones. Additionally, molecular Pd(ii) coordination compounds of L and HLCl were synthesized and characterized to better understand the coordination modes of these ligands. Both molecular and colloidal Pd systems have been further tested in catalytic C-C coupling processes. Three different types of reactions have been observed depending on the catalytic system: (i) the Suzuki-Miyaura reaction takes place with Pd molecular complexes; (ii) a secondary reaction, the dehalogenation of the substrate, is always detected and (iii) the C-C homocoupling between two molecules of bromoarenes is observed with colloidal catalysts.
U2 - 10.1039/c7dt02729j
DO - 10.1039/c7dt02729j
M3 - Article
SN - 1477-9226
VL - 46
SP - 11768
EP - 11778
JO - Dalton Transactions
JF - Dalton Transactions
IS - 35
ER -