Differential equations defined by the sum of two quasi-homogeneous vector fields

B. Coll, A. Gasull, R. Prohens

Producció científica: Contribució a revistaArticleRecercaAvaluat per experts

40 Cites (Scopus)

Resum

In this paper we prove, that under certain hypotheses, the planar differential equation: ẋ = X1(x, y) + X2(x, y), ẏ = Y1(x, y) + Y2(x, y), where (Xi, Yi), i = 1, 2, are quasi-homogeneous vector fields, has at most two limit cycles. The main tools used in the proof are the generalized polar coordinates, introduced by Lyapunov to study the stability of degenerate critical points, and the analysis of the derivatives of the Poincaré return map. Our results generalize those obtained for polynomial systems with homogeneous non-linearities.
Idioma originalAnglès
Pàgines (de-a)212-231
RevistaCanadian Journal of Mathematics
Volum49
Número2
DOIs
Estat de la publicacióPublicada - 1 de gen. 1997

Fingerprint

Navegar pels temes de recerca de 'Differential equations defined by the sum of two quasi-homogeneous vector fields'. Junts formen un fingerprint únic.

Com citar-ho