Detecting alien limit cycles near a Hamiltonian 2-saddle cycle

Stijn Luca, Freddy Dumortier, Magdalena Caubergh, Robert Roussarie

Producció científica: Contribució a revistaArticleRecercaAvaluat per experts

7 Cites (Scopus)

Resum

This paper aims at providing an example of a cubic Hamiltonian 2-saddle cycle that after bifurcation can give rise to an alien limit cycle; this is a limit cycle that is not controlled by a zero of the related Abelian integral. To guarantee the existence of an alien limit cycle one can verify generic conditions on the Abelian integral and on the transition map associated to the connections of the 2-saddle cycle. In this paper, a general method is developed to compute the first and second derivative of the transition map along a connection between two saddles. Next, a concrete generic Hamiltonian 2-saddle cycle is analyzed using these formula's to verify the generic relation between the second order derivative of both transition maps, and a calculation of the Abelian integral.
Idioma originalAnglès
Pàgines (de-a)1081-1108
RevistaDiscrete and Continuous Dynamical Systems
Volum25
DOIs
Estat de la publicacióPublicada - 1 de des. 2009

Fingerprint

Navegar pels temes de recerca de 'Detecting alien limit cycles near a Hamiltonian 2-saddle cycle'. Junts formen un fingerprint únic.

Com citar-ho