TY - JOUR
T1 - Design of targeted nanostructured coordination polymers (NCPS) for cancer therapy
AU - Novio, F.
PY - 2020
Y1 - 2020
N2 - Conventional cancer chemotherapy presents notable drug side effects due to non-selective action of the chemotherapeutics to normal cells. Nanoparticles decorated with receptor-specific ligands on the surface have shown an important role in improving site-selective binding, retention, and drug delivery to the cancer cells. This review summarizes the recent reported achievements using nanostructured coordination polymers (NCPs) with active targeting properties for cancer treatment in vitro and in vivo. Despite the controversy surrounding the effectivity of active targeting nanoparticles, several studies suggest that active targeting nanoparticles notably increase the selectivity and the cytotoxic effect in tumoral cells over the conventional anticancer drugs and non-targeted nanoparticle platform, which enhances drug efficacy and safety. In most cases, the nanocarriers have been endowed with remarkable capabilities such as stimuli-responsive properties, targeting abilities, or the possibility to be monitored by imaging techniques. Unfortunately, the lack of preclinical studies impedes the evaluation of these unique and promising findings for the translation of NCPs into clinical trials
AB - Conventional cancer chemotherapy presents notable drug side effects due to non-selective action of the chemotherapeutics to normal cells. Nanoparticles decorated with receptor-specific ligands on the surface have shown an important role in improving site-selective binding, retention, and drug delivery to the cancer cells. This review summarizes the recent reported achievements using nanostructured coordination polymers (NCPs) with active targeting properties for cancer treatment in vitro and in vivo. Despite the controversy surrounding the effectivity of active targeting nanoparticles, several studies suggest that active targeting nanoparticles notably increase the selectivity and the cytotoxic effect in tumoral cells over the conventional anticancer drugs and non-targeted nanoparticle platform, which enhances drug efficacy and safety. In most cases, the nanocarriers have been endowed with remarkable capabilities such as stimuli-responsive properties, targeting abilities, or the possibility to be monitored by imaging techniques. Unfortunately, the lack of preclinical studies impedes the evaluation of these unique and promising findings for the translation of NCPs into clinical trials
UR - http://www.scopus.com/inward/record.url?eid=2-s2.0-85089132745&partnerID=MN8TOARS
U2 - 10.3390/molecules25153449
DO - 10.3390/molecules25153449
M3 - Artículo
SN - 1420-3049
VL - 25
JO - Molecules
JF - Molecules
M1 - 3449
ER -