Data injection at execution time in grid environments using dynamic data driven application system for wildland fire spread prediction

Roque Rodríguez*, Ana Cortés, Tomás Margalef

*Autor corresponent d’aquest treball

Producció científica: Capítol de llibreCapítolRecercaAvaluat per experts

6 Cites (Scopus)

Resum

In our research work, we use two Dynamic Data Driven Application System (DDDAS) methodologies to predict wildfire propagation. Our goal is to build a system that dynamically adapts to constant changes in environmental conditions when a hazard occurs and under strict real-time deadlines. For this purpose, we are on the way of building a parallel wildfire prediction method, which is able to assimilate real-time data to be injected in the prediction process at execution time. In this paper, we propose a strategy for data injection indistributed environments.

Idioma originalAnglès
Títol de la publicacióCluster, Cloud and Grid Computing (CCGrid), 2010 10th IEEE/ACM International Conference on
Editors Parashar, M., Buyya, R.
Lloc de publicacióNova York (US)
Pàgines565-568
Nombre de pàgines4
Edició1
DOIs
Estat de la publicacióPublicada - 1 de gen. 2010

Sèrie de publicacions

NomCCGrid 2010 - 10th IEEE/ACM International Conference on Cluster, Cloud, and Grid Computing

Fingerprint

Navegar pels temes de recerca de 'Data injection at execution time in grid environments using dynamic data driven application system for wildland fire spread prediction'. Junts formen un fingerprint únic.

Com citar-ho