Cyclicity of (1,3)-switching FF type equilibria

Xingwu Chen, Jaume Llibre, Weinian Zhang

Producció científica: Contribució a una revistaArticleRecerca

5 Cites (Scopus)

Resum

© 2019 American Institute of Mathematical Sciences. All rights reserved. Hilbert’s 16th Problem suggests a concern to the cyclicity of planar polynomial differential systems, but it is known that a key step to the answer is finding the cyclicity of center-focus equilibria of polynomial differential systems (even of order 2 or 3). Correspondingly, the same question for polynomial discontinuous differential systems is also interesting. Recently, it was proved that the cyclicity of (1, 2)-switching FF type equilibria is at least 5. In this paper we prove that the cyclicity of (1, 3)-switching FF type equilibria with homogeneous cubic nonlinearities is at least 3.
Idioma originalEnglish
Pàgines (de-a)6541-6552
RevistaDiscrete and Continuous Dynamical Systems - Series B
Volum24
DOIs
Estat de la publicacióPublicada - 1 de des. 2019

Fingerprint

Navegar pels temes de recerca de 'Cyclicity of (1,3)-switching FF type equilibria'. Junts formen un fingerprint únic.

Com citar-ho