Curvature measures of pseudo-Riemannian manifolds

Andreas Bernig, Dmitry Faifman, Gil Solanes

Producció científica: Contribució a una revistaArticleRecercaAvaluat per experts

3 Cites (Scopus)

Resum

The Weyl principle is extended from the Riemannian to the pseudo-Riemannian setting, and subsequently to manifolds equipped with generic symmetric (0,2){(0,2)}-tensors. More precisely, we construct a family of generalized curvature measures attached to such manifolds, extending the Riemannian Lipschitz-Killing curvature measures introduced by Federer. We then show that they behave naturally under isometric immersions, in particular they do not depend on the ambient signature. Consequently, we extend Theorema Egregium to surfaces equipped with a generic metric of changing signature, and more generally, establish the existence as distributions of intrinsically defined Lipschitz-Killing curvatures for such manifolds of arbitrary dimension. This includes in particular the scalar curvature and the Chern-Gauss-Bonnet integrand. Finally, we deduce a Chern-Gauss-Bonnet theorem for pseudo-Riemannian manifolds with generic boundary.

Idioma originalEnglish
Pàgines (de-a)77-127
Nombre de pàgines51
RevistaJournal fur die Reine und Angewandte Mathematik
Volum2022
Número788
DOIs
Estat de la publicacióPublicada - 1 de jul. 2022

Fingerprint

Navegar pels temes de recerca de 'Curvature measures of pseudo-Riemannian manifolds'. Junts formen un fingerprint únic.

Com citar-ho