Cross-spectral local descriptors via quadruplet network

Cristhian A. Aguilera, Angel D. Sappa, Cristhian Aguilera, Ricardo Toledo

Producció científica: Contribució a revistaArticleRecercaAvaluat per experts

35 Cites (Scopus)

Resum

© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This paper presents a novel CNN-based architecture, referred to as Q-Net, to learn local feature descriptors that are useful for matching image patches from two different spectral bands. Given correctly matched and non-matching cross-spectral image pairs, a quadruplet network is trained to map input image patches to a common Euclidean space, regardless of the input spectral band. Our approach is inspired by the recent success of triplet networks in the visible spectrum, but adapted for cross-spectral scenarios, where, for each matching pair, there are always two possible non-matching patches: one for each spectrum. Experimental evaluations on a public cross-spectral VIS-NIR dataset shows that the proposed approach improves the state-of-the-art. Moreover, the proposed technique can also be used in mono-spectral settings, obtaining a similar performance to triplet network descriptors, but requiring less training data.
Idioma originalAnglès
Número d’article873
RevistaSensors
Volum17
Número4
DOIs
Estat de la publicacióPublicada - 15 d’abr. 2017

Fingerprint

Navegar pels temes de recerca de 'Cross-spectral local descriptors via quadruplet network'. Junts formen un fingerprint únic.

Com citar-ho