Crofton formulas in pseudo-Riemannian space forms

Andreas Bernig, Dmitry Faifman, Gil Solanes

Producció científica: Contribució a una revistaArticleRecercaAvaluat per experts

Resum

Crofton formulas on simply connected Riemannian space forms allow the volumes, or more generally the Lipschitz-Killing curvature integrals of a submanifold with corners, to be computed by integrating the Euler characteristic of its intersection with all geodesic submanifolds. We develop a framework of Crofton formulas with distributions replacing measures, which has in its core Alesker's Radon transform on valuations. We then apply this framework, and our recent Hadwiger-Type classification, to compute explicit Crofton formulas for all isometry-invariant valuations on all pseudospheres, pseudo-Euclidean and pseudohyperbolic spaces. We find that, in essence, a single measure which depends analytically on the metric, gives rise to all those Crofton formulas through its distributional boundary values at parts of the boundary corresponding to the different indefinite signatures. In particular, the Crofton formulas we obtain are formally independent of signature.

Idioma originalEnglish
Pàgines (de-a)1935-1979
Nombre de pàgines45
RevistaCompositio Mathematica
Volum158
Número10
DOIs
Estat de la publicacióPublicada - 28 d’oct. 2022

Fingerprint

Navegar pels temes de recerca de 'Crofton formulas in pseudo-Riemannian space forms'. Junts formen un fingerprint únic.

Com citar-ho