Counting hyperelliptic curves

Producció científica: Contribució a revistaArticleRecercaAvaluat per experts

4 Cites (Scopus)

Resum

We find a closed formula for the number hyp (g) of hyperelliptic curves of genus g over a finite field k = Fq of odd characteristic. These numbers hyp (g) are expressed as a polynomial in q with integer coefficients that depend on g and the set of divisors of q - 1 and q + 1. As a by-product we obtain a closed formula for the number of self-dual curves of genus g. A hyperelliptic curve is defined to be self-dual if it is k-isomorphic to its own hyperelliptic twist. © 2009 Elsevier Inc. All rights reserved.
Idioma originalAnglès
Pàgines (de-a)774-787
RevistaAdvances in Mathematics
Volum221
DOIs
Estat de la publicacióPublicada - 20 de juny 2009

Fingerprint

Navegar pels temes de recerca de 'Counting hyperelliptic curves'. Junts formen un fingerprint únic.

Com citar-ho