Resum
In Geometriae Dedicata 79 (2000), 101-108, Rudolf Winkel conjectured: for a given algebraic curve f=0 of degree m ≥ 4 there is in general no polynomial vector field of degree less than 2m -1 leaving invariant f=0 and having exactly the ovals of f=0 as limit cycles. Here we show that this conjecture is not true. © Springer 2005.
Idioma original | Anglès |
---|---|
Pàgines (de-a) | 213-219 |
Revista | Geometriae Dedicata |
Volum | 110 |
DOIs | |
Estat de la publicació | Publicada - 1 de febr. 2005 |