Cooperative localization with angular measurements and posterior linearization

Yibo Wu, Bile Peng, Henk Wymeersch, Gonzalo Seco-Granados, Anastasios Kakkavas, Mario H.Castaneda Garcia, Richard A. Stirling-Gallacher

Producció científica: Capítol de llibreCapítolRecercaAvaluat per experts

7 Cites (Scopus)

Resum

The application of cooperative localization in vehicular networks is attractive to improve accuracy and coverage of the positioning. Conventional distance measurements between vehicles are limited by the need for synchronization and provide no heading information of the vehicle. To address this, we present a cooperative localization algorithm using posterior linearization belief propagation (PLBP) utilizing angle-of-arrival (AoA)-only measurements. Simulation results show that both directional and positional root mean squared error (RMSE) of vehicles can be decreased significantly and converge to a low value in a few iterations. Furthermore, the influence of parameters for the vehicular network, such as vehicle density, communication radius, prior uncertainty, and AoA measurements noise, is analyzed.

Idioma originalEnglish
Títol de la publicació2020 IEEE International Conference on Communications Workshops, ICC Workshops 2020 - Proceedings
EditorInstitute of Electrical and Electronics Engineers Inc.
ISBN (electrònic)9781728174402
DOIs
Estat de la publicacióPublicada - de juny 2020

Sèrie de publicacions

Nom2020 IEEE International Conference on Communications Workshops, ICC Workshops 2020 - Proceedings

Fingerprint

Navegar pels temes de recerca de 'Cooperative localization with angular measurements and posterior linearization'. Junts formen un fingerprint únic.

Com citar-ho