TY - JOUR
T1 - Controlled generation of ferromagnetic martensite from paramagnetic austenite in AISI 316L austenitic stainless steel
AU - Menéndez, E.
AU - Sort, Jordi
AU - Liedke, M. O.
AU - Fassbender, J.
AU - Suriñach, S.
AU - Baró, M. D.
AU - Nogués, J.
PY - 2009/1/1
Y1 - 2009/1/1
N2 - The strain-induced austenite (γ) to martensite (α′) transformation in AISI 316L austenitic stainless steel, either in powders or bulk specimens, has been investigated. The phase transformation is accomplished using either ball-milling processes (in powders) - dynamic approach - or by uniaxial compression procedures (in bulk specimens) - quasistatic approach. Remarkably, an increase in the loading rate causes opposite effects in each case: (i) it increases the amount of transformed α' in ball-milling procedures, but (ii) it decreases the amount of α′ in pressed samples. Both the microstructural changes (e.g., crystallite size refinement, microstrains, or type of stacking faults) in the parent γ phase and the role of the concomitant temperature rise during deformation seem to be responsible for these opposite trends. Furthermore, the results show the correlation between the γ → α′ phase transformation and the development of magnetism and enhanced hardness. © 2009 Materials Research Society.
AB - The strain-induced austenite (γ) to martensite (α′) transformation in AISI 316L austenitic stainless steel, either in powders or bulk specimens, has been investigated. The phase transformation is accomplished using either ball-milling processes (in powders) - dynamic approach - or by uniaxial compression procedures (in bulk specimens) - quasistatic approach. Remarkably, an increase in the loading rate causes opposite effects in each case: (i) it increases the amount of transformed α' in ball-milling procedures, but (ii) it decreases the amount of α′ in pressed samples. Both the microstructural changes (e.g., crystallite size refinement, microstrains, or type of stacking faults) in the parent γ phase and the role of the concomitant temperature rise during deformation seem to be responsible for these opposite trends. Furthermore, the results show the correlation between the γ → α′ phase transformation and the development of magnetism and enhanced hardness. © 2009 Materials Research Society.
U2 - 10.1557/jmr.2009.0067
DO - 10.1557/jmr.2009.0067
M3 - Article
SN - 0884-2914
VL - 24
SP - 565
EP - 573
JO - Journal of Materials Research
JF - Journal of Materials Research
ER -