Continuous-time random walks and traveling fronts

Sergei Fedotov, Vicenç Méndez López

Producció científica: Contribució a revistaArticleRecercaAvaluat per experts

50 Cites (Scopus)

Resum

We present a geometric approach to the problem of propagating fronts into an unstable state, valid for an arbitrary continuous-time random walk with a Fisher-Kolmogorov-Petrovski-Piskunov growth/reaction rate. We derive an integral Hamilton-Jacobi type equation for the action functional determining the position of reaction front and its speed. Our method does not rely on the explicit derivation of a differential equation for the density of particles. In particular, we obtain an explicit formula for the propagation speed for the case of anomalous transport involving non-Markovian random processes
Idioma originalAnglès
Pàgines (de-a)#030102/1-030102/4
RevistaPhysical Review E
Volum66
Número3
DOIs
Estat de la publicacióPublicada - 2002

Fingerprint

Navegar pels temes de recerca de 'Continuous-time random walks and traveling fronts'. Junts formen un fingerprint únic.

Com citar-ho