Continuous Head Pose Estimation Using Manifold Subspace Embedding and Multivariate Regression

Katerine Diaz-Chito, Jesus Martinez Del Rincon, Aura Hernandez-Sabate, Debora Gil

Producció científica: Contribució a revistaArticleRecercaAvaluat per experts

19 Cites (Scopus)

Resum

© 2013 IEEE. In this paper, a continuous head pose estimation system is proposed to estimate yaw and pitch head angles from raw facial images. Our approach is based on manifold learning-based methods, due to their promising generalization properties shown for face modeling from images. The method combines histograms of oriented gradients, generalized discriminative common vectors, and continuous local regression to achieve successful performance. Our proposal was tested on multiple standard face data sets, as well as in a realistic scenario. Results show a considerable performance improvement and a higher consistence of our model in comparison with other state-of-the-art methods, with angular errors varying between 9° and 17°.
Idioma originalAnglès
Pàgines (de-a)18325-18334
RevistaIEEE Access
Volum6
DOIs
Estat de la publicacióPublicada - 17 de març 2018

Fingerprint

Navegar pels temes de recerca de 'Continuous Head Pose Estimation Using Manifold Subspace Embedding and Multivariate Regression'. Junts formen un fingerprint únic.

Com citar-ho