Construction of hadamard ℤ<inf>2</inf>ℤ<inf>4</inf>Q<inf>8</inf>-codes for each allowable value of the rank and dimension of the kernel

Pere Montolio, Josep Rifà

Producció científica: Contribució a revistaArticleRecercaAvaluat per experts

2 Cites (Scopus)

Resum

© 2015 IEEE. This paper deals with Hadamard ℤ2ℤ4Q8 -codes, which are binary codes after a Gray map from a subgroup of direct products of ℤ2, ℤ4, and Q8, where Q8 is the quaternionic group. In a previous work, these codes were classified in five shapes. In this paper, we analyze the allowable range of values for the rank and dimension of the kernel, which depends on the particular shape of the code. We show that all these codes can be represented in a standard form, from a set of generators, which can help in understanding the characteristics of each shape. The main results we present are the characterization of Hadamard ℤ2ℤ4Q8-codes as a quotient of a semidirect product of ℤ2ℤ4-linear codes and the construction of Hadamard ℤ2ℤ4Q8-codes with each allowable pair of values for the rank and dimension of the kernel.
Idioma originalAnglès
Número d’article7029629
Pàgines (de-a)1948-1958
RevistaIEEE Transactions on Information Theory
Volum61
Número4
DOIs
Estat de la publicacióPublicada - 1 d’abr. 2015

Fingerprint

Navegar pels temes de recerca de 'Construction of hadamard ℤ<inf>2</inf>ℤ<inf>4</inf>Q<inf>8</inf>-codes for each allowable value of the rank and dimension of the kernel'. Junts formen un fingerprint únic.

Com citar-ho