Computational steering strategy to calibrate input variables in a dynamic data driven genetic algorithm for forest fire spread prediction

Mónica Denham*, Ana Cortés, Tomás Margalef

*Autor corresponent d’aquest treball

Producció científica: Contribució a revistaArticleRecercaAvaluat per experts

15 Cites (Scopus)

Resum

This work describes a Dynamic Data Driven Genetic Algorithm (DDDGA) for improving wildfires evolution prediction. We propose an universal computational steering strategy to automatically adjust certain input data values of forest fire simulators, which works independently on the underlying propagation model. This method has been implemented in a parallel fashion and the experiments performed demonstrated its ability to overcome the input data uncertainty and to reduce the execution time of the whole prediction process.

Idioma originalAnglès nord-americà
Pàgines (de-a)479-488
Nombre de pàgines10
RevistaLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
NúmeroPART 2
DOIs
Estat de la publicacióPublicada - 2009

Fingerprint

Navegar pels temes de recerca de 'Computational steering strategy to calibrate input variables in a dynamic data driven genetic algorithm for forest fire spread prediction'. Junts formen un fingerprint únic.

Com citar-ho