Resum
This work describes a Dynamic Data Driven Genetic Algorithm (DDDGA) for improving wildfires evolution prediction. We propose an universal computational steering strategy to automatically adjust certain input data values of forest fire simulators, which works independently on the underlying propagation model. This method has been implemented in a parallel fashion and the experiments performed demonstrated its ability to overcome the input data uncertainty and to reduce the execution time of the whole prediction process.
Idioma original | Anglès nord-americà |
---|---|
Pàgines (de-a) | 479-488 |
Nombre de pàgines | 10 |
Revista | Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) |
Número | PART 2 |
DOIs | |
Estat de la publicació | Publicada - 2009 |