Complex and CR-structures on compact Lie groups associated to Abelian actions

Jean Jacques Loeb, Mònica Manjarín, Marcel Nicolau

Producció científica: Contribució a revistaArticleRecercaAvaluat per experts

4 Cites (Scopus)

Resum

It was shown by Samelson [A class of complex-analytic manifolds. Portugaliae Math. 12, 129-132 (1953)] and Wang [Closed manifolds with homogeneous complex structure. Amer. J. Math. 76, 1-32 (1954)] that each compact Lie group K of even dimension admits left-invariant complex structures. When K has odd dimension it admits a left-invariant CR-structure of maximal dimension. This has been proved recently by Charbonnel and Khalgui [Classification des structures CR invariantes pour les groupes de Lie compactes. J. Lie theory 14, 165-198 (2004)] who have also given a complete algebraic description of these structures. In this article, we present an alternative and more geometric construction of this type of invariant structures on a compact Lie group K when it is semisimple. We prove that each left-invariant complex structure, or each CR-structure of maximal dimension with a transverse CR-action by ℝ, is induced by a holomorphic ℂ1 -action on a quasi-projective manifold X naturally associated to K. We then show that X admits more general Abelian actions, also inducing complex or CR-structures on K which are generically non-invariant. © 2007 Springer Science + Business Media B.V.
Idioma originalAnglès
Pàgines (de-a)361-378
RevistaAnnals of Global Analysis and Geometry
Volum32
DOIs
Estat de la publicacióPublicada - 1 de nov. 2007

Fingerprint

Navegar pels temes de recerca de 'Complex and CR-structures on compact Lie groups associated to Abelian actions'. Junts formen un fingerprint únic.

Com citar-ho