Combining variable neighborhood search with simulation for the inventory routing problem with stochastic demands and stock-outs

Aljoscha Gruler*, Javier Panadero, Jesica de Armas, José A. Moreno Pérez, Angel A. Juan

*Autor corresponent d’aquest treball

Producció científica: Contribució a revistaArticleRecercaAvaluat per experts

69 Cites (Scopus)
2 Descàrregues (Pure)

Resum

Vendor managed inventory aims at reducing supply chain costs by centralizing inventory management and vehicle routing decisions. This integrated supply chain approach results in a complex combinatorial optimization problem known as the inventory routing problem (IRP). This paper presents a variable neighborhood search metaheuristic hybridized with simulation to solve the IRP under demand uncertainty. Our simheuristic approach is able to solve large sized instances for the single period IRP with stochastic demands and stock-outs in very short computing times. A range of experiments underline the algorithm's competitiveness compared to previously used heuristic approaches. The results are analyzed in order to provide closer managerial insights.

Idioma originalAnglès
Pàgines (de-a)278-288
Nombre de pàgines11
RevistaComputers and Industrial Engineering
Volum123
DOIs
Estat de la publicacióPublicada - de set. 2018

Fingerprint

Navegar pels temes de recerca de 'Combining variable neighborhood search with simulation for the inventory routing problem with stochastic demands and stock-outs'. Junts formen un fingerprint únic.

Com citar-ho