Comb model: Non-markovian versus markovian

Alexander Iomin*, Vicenç Méndez, Werner Horsthemke

*Autor corresponent d’aquest treball

Producció científica: Contribució a revistaArticleRecercaAvaluat per experts

8 Cites (Scopus)

Resum

Combs are a simple caricature of various types of natural branched structures, which belong to the category of loopless graphs and consist of a backbone and branches. We study two generalizations of comb models and present a generic method to obtain their transport properties. The first is a continuous time random walk on a many dimensional m + n comb, where m and n are the dimensions of the backbone and branches, respectively. We observe subdiffusion, ultra-slow diffusion and random localization as a function of n. The second deals with a quantum particle in the 1 + 1 comb. It turns out that the comb geometry leads to a power-law relaxation, described by a wave function in the framework of the Schrödinger equation.

Idioma originalAnglès nord-americà
Número d’article54
Pàgines (de-a)1-13
Nombre de pàgines13
RevistaFractal and Fractional
Volum3
Número4
DOIs
Estat de la publicacióPublicada - 2019

Fingerprint

Navegar pels temes de recerca de 'Comb model: Non-markovian versus markovian'. Junts formen un fingerprint únic.

Com citar-ho