Coding Theorems for Compound Problems via Quantum Rényi Divergences

Milán Mosonyi

Producció científica: Contribució a revistaArticleRecercaAvaluat per experts

24 Cites (Scopus)

Resum

© 2015 IEEE. Recently, a new notion of quantum Rényi divergences has been introduced by Müller-Lennert, Dupuis, Szehr, Fehr, and Tomamichel and Wilde, Winter, and Yang, which found a number of applications in strong converse theorems. Here, we show that these new Rényi divergences are also useful tools to obtain coding theorems in the direct domain of various problems. We demonstrate this by giving new and considerably simplified proofs for the achievability parts of Stein's lemma with composite null-hypothesis, universal state compression, and the classical capacity of compound classical-quantum channels, based on single-shot error bounds already available in the literature and simple properties of the quantum Rényi divergences. The novelty of our proofs is that the composite/compound coding theorems can be almost directly obtained from the single-shot error bounds, essentially with the same effort as for the case of simple null-hypothesis/single source/single channel.
Idioma originalAnglès
Número d’article7086060
Pàgines (de-a)2997-3012
RevistaIEEE Transactions on Information Theory
Volum61
Número6
DOIs
Estat de la publicacióPublicada - 1 de juny 2015

Fingerprint

Navegar pels temes de recerca de 'Coding Theorems for Compound Problems via Quantum Rényi Divergences'. Junts formen un fingerprint únic.

Com citar-ho