Cloud-based urgent computing for forest fire spread prediction

Edigley Fraga*, Ana Cortes Fite, T. Margalef, Porfidio Hernandez Bude, Carlos Carrillo Jordan

*Autor corresponent d’aquest treball

Producció científica: Contribució a una revistaArticleRecercaAvaluat per experts

1 Descàrregues (Pure)

Resum

Forest fires cause every year damages to biodiversity, atmosphere, and economy activities. Forest fire simulation have improved significantly, but input data describing fire scenarios are subject to high levels of uncertainty. In this work the two-stage prediction scheme is used to adjust unknown parameters. This scheme relies on an input data calibration phase, which is carried over following a genetic algorithm strategy. The calibrated inputs are then pipelined into the actual prediction phase. This two-stage prediction scheme is leveraged by the cloud computing paradigm, which enables high level of parallelism on demand, elasticity, scalability and low-cost. In this paper, all the models designed to properly allocate cloud resources to the two-stage scheme in a performance-efficient and cost-effective way are described. This Cloud-based Urgent Computing (CuCo) architecture has been tested using, as study case, an extreme wildland fire that took place in California in 2018 (Camp Fire).

Idioma originalEnglish
Número d’article106057
Pàgines (de-a)1-14
Nombre de pàgines14
RevistaEnvironmental Modelling & Software
Volum177
Data online anticipada27 d’abr. 2024
DOIs
Estat de la publicacióPublicada - 1 de juny 2024

Fingerprint

Navegar pels temes de recerca de 'Cloud-based urgent computing for forest fire spread prediction'. Junts formen un fingerprint únic.

Com citar-ho