Classification of hyperspectral images compressed through 3D-JPEG2000

Ian Blanes*, Alaitz Zabala, Gerard Moré, Xavier Pons, Joan Serra-Sagristà

*Autor corresponent d’aquest treball

Producció científica: Contribució a revistaArticleRecercaAvaluat per experts

13 Cites (Scopus)

Resum

Classification of hyperspectral images is paramount to an increasing number of user applications. With the advent of more powerful technology, sensed images demand for larger requirements in computational and memory capabilities, which has led to devise compression techniques to alleviate the transmission and storage necessities. Classification of compressed images is addressed in this paper. Compression takes into account the spectral correlation of hyperspectral images together with more simple approaches. Experiments have been performed on a large hyperspectral CASI image with 72 bands. Both coding and classification results indicate that the performance of 3d-DWT is superior to the other two lossy coding approaches, providing consistent improvements of more than 10 dB for the coding process, and maintaining both the global accuracy and the percentage of classified area for the classification process.

Idioma originalAnglès nord-americà
Pàgines (de-a)416-423
Nombre de pàgines8
RevistaLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
NúmeroPART 3
DOIs
Estat de la publicacióPublicada - 2008

Fingerprint

Navegar pels temes de recerca de 'Classification of hyperspectral images compressed through 3D-JPEG2000'. Junts formen un fingerprint únic.

Com citar-ho