TY - JOUR
T1 - Chemical state, distribution, and role of Ti- and Nb-based additives on the Ca(BH4)2 system
AU - Bonatto Minella, Christian
AU - Pellicer, Eva
AU - Rossinyol, Emma
AU - Karimi, Fahim
AU - Pistidda, Claudio
AU - Garroni, Sebastiano
AU - Milanese, Chiara
AU - Nolis, Pau
AU - Baró, Maria Dolors
AU - Gutfleisch, Oliver
AU - Pranzas, Klaus P.
AU - Schreyer, Andreas
AU - Klassen, Thomas
AU - Bormann, Rüdiger
AU - Dornheim, Martin
PY - 2013/3/7
Y1 - 2013/3/7
N2 - Light metal tetrahydroborates are regarded as promising materials for solid state hydrogen storage. Due to both a high gravimetric hydrogen capacity of 11.5 wt % and an ideal dehydrogenation enthalpy of 32 kJ mol-1 H 2, Ca(BH4)2 is considered to be one of the most interesting compounds in this class of materials. In this work, a comprehensive investigation of the effect of different selected additives (TiF4, NbF5, Ti-isopropoxide, and CaF2) on the reversible hydrogenation reaction of calcium borohydride is presented combining different investigation techniques. The chemical state of the Nb- and Ti-based additives is studied by X-ray absorption spectroscopy (e.g., XANES). Transmission electron microscopy (TEM) coupled with selected area electron diffraction (SAED) and energy-dispersive X-ray spectroscopy (EDX) was used to show the local structure, size, and distribution of the additive/catalyst. 11B{1H} solid state magic angle spinning-nuclear magnetic resonance (MAS NMR) was carried out to detect possible amorphous phases. The formation of TiB 2 and NbB2 nanoparticles was observed after milling or upon sorption reactions of the Nb- and Ti-based Ca(BH4)2 doped systems. The formation of transition-metal boride nanoparticles is proposed to support the heterogeneous nucleation of CaB6. The {111}CaB6/{1011}NbB2, {111}CaB6/{1010}NbB 2, as well as {111}CaB6/{1011}TiB2 plane pairs have the potential to be the matching planes because the d-value mismatch is well below the d-critical mismatch value (6%). Transition-metal boride nanoparticles act as heterogeneous nucleation sites for CaB6, refine the microstructure thus improving the sorption kinetics, and, as a consequence, lead to the reversible formation of Ca(BH4)2. © 2013 American Chemical Society.
AB - Light metal tetrahydroborates are regarded as promising materials for solid state hydrogen storage. Due to both a high gravimetric hydrogen capacity of 11.5 wt % and an ideal dehydrogenation enthalpy of 32 kJ mol-1 H 2, Ca(BH4)2 is considered to be one of the most interesting compounds in this class of materials. In this work, a comprehensive investigation of the effect of different selected additives (TiF4, NbF5, Ti-isopropoxide, and CaF2) on the reversible hydrogenation reaction of calcium borohydride is presented combining different investigation techniques. The chemical state of the Nb- and Ti-based additives is studied by X-ray absorption spectroscopy (e.g., XANES). Transmission electron microscopy (TEM) coupled with selected area electron diffraction (SAED) and energy-dispersive X-ray spectroscopy (EDX) was used to show the local structure, size, and distribution of the additive/catalyst. 11B{1H} solid state magic angle spinning-nuclear magnetic resonance (MAS NMR) was carried out to detect possible amorphous phases. The formation of TiB 2 and NbB2 nanoparticles was observed after milling or upon sorption reactions of the Nb- and Ti-based Ca(BH4)2 doped systems. The formation of transition-metal boride nanoparticles is proposed to support the heterogeneous nucleation of CaB6. The {111}CaB6/{1011}NbB2, {111}CaB6/{1010}NbB 2, as well as {111}CaB6/{1011}TiB2 plane pairs have the potential to be the matching planes because the d-value mismatch is well below the d-critical mismatch value (6%). Transition-metal boride nanoparticles act as heterogeneous nucleation sites for CaB6, refine the microstructure thus improving the sorption kinetics, and, as a consequence, lead to the reversible formation of Ca(BH4)2. © 2013 American Chemical Society.
U2 - 10.1021/jp3116275
DO - 10.1021/jp3116275
M3 - Article
SN - 1932-7447
VL - 117
SP - 4394
EP - 4403
JO - Journal of Physical Chemistry C
JF - Journal of Physical Chemistry C
ER -