Chebyshev property of complete elliptic integrals and its application to abelian integrals

Armengol Gasull, Weigu Li, Jaume Llibre, Zhifen Zhang

Producció científica: Contribució a revistaArticleRecerca

30 Cites (Scopus)

Resum

This paper has two parts. In the first one we study the maximum number of zeros of a function of the form f(k)K(k) + g(k)E(k), where k ∈ (-1, 1), f and g are polynomials, and K(k) = ∫oπ/2 dθ/√1-k2 sin2 θ and E(k) = ∫oπ/2 √1 - k2 sin2 θdθ are the complete normal elliptic integrals of the first and second kinds, respectively. In the second part we apply the first one to obtain an upper bound for the number of limit cycles which appear from a small polynomial perturbation of the planar isochronous differential equation ż = iz + z3, where z = x + iy ∈ ℂ.
Idioma originalAnglès
Pàgines (de-a)341-361
RevistaPacific Journal of Mathematics
Volum202
Número2
DOIs
Estat de la publicacióPublicada - 1 de gen. 2002

Fingerprint

Navegar pels temes de recerca de 'Chebyshev property of complete elliptic integrals and its application to abelian integrals'. Junts formen un fingerprint únic.

Com citar-ho