“Challenges and Controversies of Generative AI in Medical Diagnosis”

Producció científica: Contribució a revistaArticleRecercaAvaluat per experts

2 Descàrregues (Pure)

Resum

This paper provides a comprehensive exploration of the transformative role of generative AI models, specifically Generative Adversarial Networks (GANs) and Variational Autoencoders (VAEs), in the realm of medical diagnosis. Drawing from the philosophy of medicine and epidemiology, the paper examines the technical, ethical, and philosophical dimensions of integrating generative models into healthcare. A case study featuring Emily underscores the pivotal support generative AI can offer in complex medical diagnoses. The discussion extends to the application of GANs and VAEs in medical imaging, emphasizing their potential in improving diagnostics, treatment planning, and medical research. The paper further delves into challenges and controversies, addressing issues of anatomical accuracy, biases in training data, interpretability of AI-generated medical images, and ethical considerations, for example, the phenomenon of "Dr. Google" and its implications for self-diagnosis, particularly in the context of the increasing role of generative AI models in healthcare. The concluding section emphasizes the need for health literacy, responsible use of online information, and collaborative decision-making between patients and healthcare providers. We advocate for interdisciplinary collaborations to establish ethical guidelines and ensure responsible AI use in healthcare.
Títol traduït de la contribucióDesafíos y controversias de la IA generativa en el diagnóstico médico
Idioma originalAnglès
Pàgines (de-a)88-121
Nombre de pàgines33
RevistaEuphyía. Revista de Filosofía
Volum17
Número32
DOIs
Estat de la publicacióPublicada - 2023

Fingerprint

Navegar pels temes de recerca de '“Challenges and Controversies of Generative AI in Medical Diagnosis”'. Junts formen un fingerprint únic.

Com citar-ho