Centers for the Kukles homogeneous systems with odd degree

Jaume Giné, Jaume Llibre, Claudia Valls

Producció científica: Contribució a una revistaArticleRecercaAvaluat per experts

18 Cites (Scopus)


© 2015 London Mathematical Society. For the polynomial differential system x=-y, y=x +Qn(x,y), where Qn(x,y) is a homogeneous polynomial of degree n there are the following two conjectures raised in 1999. (1) Is it true that the previous system for n ≥ 2 has a center at the origin if and only if its vector field is symmetric about one of the coordinate axes? (2) Is it true that the origin is an isochronous center of the previous system with the exception of the linear center only if the system has even degree? We prove both conjectures for all n odd.
Idioma originalEnglish
Pàgines (de-a)315-324
RevistaBulletin of the London Mathematical Society
Estat de la publicacióPublicada - 1 de gen. 2015


Navegar pels temes de recerca de 'Centers for the Kukles homogeneous systems with odd degree'. Junts formen un fingerprint únic.

Com citar-ho