Casting a BAIT for offline and online source-free domain adaptation

Shiqi Yang, Yaxing Wang, Luis Herranz, Shangling Jui, Joost van de Weijer

Producció científica: Contribució a revistaArticleRecercaAvaluat per experts

31 Cites (Scopus)

Resum

We address the source-free domain adaptation (SFDA) problem, where only the source model is available during adaptation to the target domain. We consider two settings: the offline setting where all target data can be visited multiple times (epochs) to arrive at a prediction for each target sample, and the online setting where the target data needs to be directly classified upon arrival. Inspired by diverse classifier based domain adaptation methods, in this paper we introduce a second classifier, but with another classifier head fixed. When adapting to the target domain, the additional classifier initialized from source classifier is expected to find misclassified features. Next, when updating the feature extractor, those features will be pushed towards the right side of the source decision boundary, thus achieving source-free domain adaptation. Experimental results show that the proposed method achieves competitive results for offline SFDA on several benchmark datasets compared with existing DA and SFDA methods, and our method surpasses by a large margin other SFDA methods under online source-free domain adaptation setting.
Idioma originalAnglès
RevistaComputer Vision and Image Understanding
Volum234
DOIs
Estat de la publicacióPublicada - 2023

Fingerprint

Navegar pels temes de recerca de 'Casting a BAIT for offline and online source-free domain adaptation'. Junts formen un fingerprint únic.

Com citar-ho