Canards Existence in the Hindmarsh–Rose Model

Jean Marc Ginoux*, Jaume Llibre, Kiyoyuki Tchizawa

*Autor corresponent d’aquest treball

Producció científica: Capítol de llibreCapítolRecercaAvaluat per experts

Resum

In two previous papers, we have proposed a new method for proving the existence of “canard solutions” on one hand for three- and four-dimensional singularly perturbed systems with only one fast variable and, on the other hand, for four-dimensional singularly perturbed systems with two fast variables; see [4, 5]. The aim of this work is to extend this method, which improves the classical ones used till now to the case of three-dimensional singularly perturbed systems with two fast variables. This method enables to state a unique generic condition for the existence of “canard solutions” for such three-dimensional singularly perturbed systems which is based on the stability of folded singularities (pseudo singular points in this case) of the normalized slow dynamics deduced from a well-known property of linear algebra. Applications of this method to a famous neuronal bursting model enables to show the existence of “canard solutions” in the Hindmarsh–Rose model.

Idioma originalAnglès
Títol de la publicacióTrends in Mathematics
EditorSpringer International Publishing AG
Pàgines169-175
Nombre de pàgines7
Volum11
ISBN (electrònic)2297-024X
ISBN (imprès)2297-0215
DOIs
Estat de la publicacióPublicada - 2019

Sèrie de publicacions

NomTrends in Mathematics
Volum11

Fingerprint

Navegar pels temes de recerca de 'Canards Existence in the Hindmarsh–Rose Model'. Junts formen un fingerprint únic.

Com citar-ho